\qquad

C.U.SHAH UNIVERSITY

Summer-2015

Subject Code: 4TE03STA1
Course Name: B.Tech(Civil)
Semester:III

Subject Name: Structural Analysis-I
Date: 6/5/2015
Marks: 70
Time:02:30 TO 5:30

Instructions:

1) Attempt all Questions of both sections in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

SECTION-I

Q-1 (a) Distinguish between: Axial loading and Transverse loading. 2
(b) What is prismatic and non prismatic bar? 2
(c) State Hooke's law. 1
(d) Define Elastic limit. 1
(e) What is Homogenous Material? 1

Q-2 (a) Derive an equation for elongation of a bar of uniformly circular section. 5
(b) A bar 0.5 m is rectangular in section with width 40 mm and thickness 30 mm .5 Calculate the change in dimensions when a tensile load of 120 KN is acting along its longitudinal axis if $\mathrm{E}=200 \mathrm{KN} / \mathrm{mm}^{2}$ and Poisson's $\mu=0.25$.
(c) Explain shear stress and shear strain.

Q-2 (a) Draw Shear force and Bending Moment Diagram for a beam shown in figure.

(b) Derive relation between uniformly distributed load (w), shear force (v) and bending moment (M).
(c) A steel bar 2 m long and 20 mm diameter is acted upon by 50 KN compressive force. If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio is 0.25 , find change in length and diameter.
Q-3 (a) Draw S.F and B.M diagram for a beam shown in figure.

(b) A steel bar 50 mm in diameter and 2.5 m long has to transmit a shock energy

C. U. SHAH UNIVERSITY

of 100 Nm . Calculate the maximum instantaneous stress and elongation produced, Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(c) Discuss the relation between strain energy due to gradual load and strain 4 energy due to sudden load.

OR

Q-3 (a) A Steel bar 1 meter in length is subjected to a pull such that the maximum stress is equal to $150 \mathrm{kN} / \mathrm{mm}^{2}$. Its cross-section is $200 \mathrm{~mm}^{2}$ over a length of 950 mm and for the middle 50 mm length the sectional area is $100 \mathrm{~mm}^{2}$. If $\mathrm{E}=$ $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Calculate strain energy stored in the bar.
(b) A 10 mm dia mild steel bar of length 1.5 m is stressed by a weight of 120 N drooping freely through 20 mm before commencing to stretch the bar. Find maximum instantaneous stress and the elongation produced in bar. Take $\mathrm{E}=2$ x $10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(c) Define the terms: (i) Strain energy, (ii) Resilience, (iii) Proof resilience, (iv) Modulus of resilience.

Section - II

Q-4 (a) Define long column and short column.
(b) Explain buckling of columns.
(c) Define slenderness ratio.
(d) Define radius of gyration (k). 1
(e) What is Castigliano's Theorem? 1

Q-5 (a) Find slope and deflection at point B for a cantilever beam shown in figure 5 using. Castiglione's first theorem. Take EI $=10 \times 10^{13} \mathrm{~N} . \mathrm{mm}^{2}$.

(b) A load of 2000 KN is applied on a short concrete column $500 \mathrm{~mm} \times 500 \mathrm{~mm}$, reinforced with four Nos. of 10 mm dia. steel bar. Find stresses in concrete and steel. Take value of E for steel as $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and for concrete 1.4 x $\mathrm{N} / \mathrm{mm}^{2}$.
(c) Define the terms: (i) Axial load, (ii) Eccentric load, (iii) Limit of Eccentricity, (iv) Core or Kernel of section.

OR

Q-5 (a) Determine vertical deflection at the free end of a cantilever beam shown in figure. Take $\mathrm{E}=2 \times 10^{5} \mathrm{n} / \mathrm{mm}^{2}$ and $\mathrm{I}=8 \times 10^{6} \mathrm{~mm}^{4}$. Using Castiglione's first theorem.

(b) A 200 mm long steel tube, 100 mm internal diameter and 10 mm thick is surrounded by a brass tube of the same thickness and length. The composite section carries an axial compression of 100 KN , find the load carried by each tube and shortening of each tube.
(c) Write short notes on Middle third rule.

Q-6 (a) Drive kernel (Core) of section for rectangular and circular section.

(b) A rectangular column section ABCD having side $\mathrm{AB}=\mathrm{CD}=400 \mathrm{~mm}$ and $\mathrm{BC}=\mathrm{AD}=300 \mathrm{~mm}$ carries a compressive load of 300 KN at corner B. Find stress at each corner A,B,C,D and draw stress- distribution diagram for each side.
(c) In a RCC column of size $250 \mathrm{~mm} \times 250 \mathrm{~mm}$, 4 bars of 20 mm diameter are placed at each corner if modular ratio is 20 and stress in concrete is $10 \mathrm{~N} / \mathrm{mm}^{2}$ find out load carried by column.

OR
Q-6 (a) A short column rectangular section $250 \mathrm{~mm} \times 200 \mathrm{~mm}$ is subjected to a load 5 of 400 KN at a point 50 mm from longer side and 100 mm from shorter side. Find maximum and minimum stresses in the column.
(b) The external and internal diameter of a hollow cast iron column is 200 mm and 150 mm respectively. If the column is hinged at both ends having a length of 4 m , determine the crippling load using rankine formula. Take fs $=$ $550 \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=1 / 1600$.
(c) What is effective length for column when :

Both ends hinged,
Both end fixed,
One end fixed and other hinged, One end fixed and other free.
C. U. SHAH UNIVERSITY

